II B.Tech - II Semester – Regular Examinations – JULY 2022

ELECTROMAGNETIC FIELD THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours	Max. Marks: 70
. .	questions from 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

- a) Define electric field intensity. Point charges 2mC and -4mC are located at (4,2,-1) and (-1,1,2), respectively. Calculate the electric field intensity at a point (0, 3, 2)
 7 M
 - b) State gauss law. Calculate E due to infinitely long conducting wire placed along Z axis.
 7 M

OR

- 2. a) In free space, electric potential $V=x^2y(z+3)$ volts. Calculate the electric field intensity at (3, 5, 6). 7 M
 - b) Explain the physical significance of divergence operator and curl operator acting on a vector quantity.
 State the divergence theorem.
 7 M

<u>UNIT – II</u>

3. a) A cylindrical capacitor consists of an inner conductor of radius 'a' & an outer conductor whose inner radius is 'b'. The space between the conductors is filled with a dielectric permittivity ε_r & length of the capacitor is L. Determine the capacitance.

	b)	Explain the concept of polarization of dielectrics.	7 M			
		OR				
4.	a)	Derive the electrostatic field's boundary conditions for				
		a dielectric-dielectric interface.	7 M			
	b)	Derive Poisson's and Laplace's equations.	7 M			
UNIT-III						

<u>UINI I - III</u>

5.	a)	Derive the equation to show that curl of magnetic field	
		intensity is equal to current density.	7 M
	b)	Find magnetic field strength, H, on the Z-axis at a point	
		P (0, 0, h), due to a current 'I' carrying circular loop,	
		$x^2+y^2 = A^2$ in Z=0 plane.	7 M
		OR	

a) Using Biot-Savart's law, derive the magnetic field 6. intensity due to infinite length conductor carrying current 'I'. 7 M

b) Explain why isolated magnetic pole does not exist and 7 M prove the second Maxwell equation div (B)=0.

$\underline{UNIT} - IV$

7.	a)	Discuss about Torque on a current loop placed in a	
		magnetic field.	7 M
	b)	The core of a toroid is 12 cm^2 and is made of material	
		with $\mu_r = 200$. If the mean radius of the toroid is 50cm,	
		calculate the number of turns needed to obtain an	
		inductance of 2.5 H.	7 M
		OR	

a) Two infinitely long parallel conductors are separated by a distance 'd'. Find the force per unit length exerted by one of the conductor on the other if the currents in the two conductors are I_1 and I_2 . 7 M b) Derive the expression for self-inductance of a toroid. 7 M $\underline{UNIT} - \underline{V}$ a) What is the physical significance of the poynting 9. vector? 7 M b) Explain the concept of displacement current and obtain an expression for the displacement current density.

8.

OR

7 M

7 M

- 10. a) Write Maxwell's equations for time varying fields and make their word statements.
 - b) In a material for which $\sigma = 10$ S/m and $\varepsilon r = 2.0$, the electric field intensity, is given by $\vec{E} = 250 \text{ Sin}10^{10} \text{t}$ V/m. Find the conduction and displacement current densities and the frequency at which they have equal 7 M magnitudes.